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Collisional-radiative average-atom model for hot plasmas
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A collisional-radiative “average-atom’{AA) model is presented for the calculation of opacities of hot
plasmas that are not in the condition of local thermodynamic equilibiufiE). The electron impact and
radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element
of the model is the photon escape probability, which at present is calculated for a semi-infinite slab. The Fermi
statistics renders the rate equations for the AA level occupancies nonlinear, which requires iterations until the
steady-state AA level occupancies are found. Detailed electronic configurations are built into the model after
the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to
the LTE state depending on the optical thickness of the plafgif163-651X%97)03406-5

PACS numbds): 52.25—b

[. INTRODUCTION and will not consider time-dependent problems. For the
present we restrict ourselves to the case when the photon
Models for calculating equation of sta(EOS data and distribution is derived from a Planckian field where the
photoabsorption cross sections of hot plasmas in the state ehergy-dependent photon density is reduced by the probabil-
local thermodynamic equilibriunfLTE) have been around ity of photon escape. This photon escape probability is
for some time[1—9]. Under LTE conditions the Fermi and coupled self-consistently to the quantum states of the AA
Boltzmann statistics define the distribution of the quantumgtom. In Sec. Il we present the basics of the model and in
mechanical states of the radiating ions and of the free elecSec. lll we present computational results.
trons around them, thus greatly facilitating the theoretical

development of the model. The condition of LTE is assured Il. DESCRIPTION OF THE MODEL
when the plasma is completely dominated by collisions
and/or when the radiation field surrounding the plasma is A. Rate constants

Planckian. In the absence of the above the statistical distri- |n this subsection we consider the rate constants that enter
bution of the different ionic states can be obtained only bythe rate equations. We consider excitations, deexcitations,
solving the relevant rate equations involving the ions ancand ionizations by electron and photon impact. We assume
photons. Previous papers addressing the subject of ionizatiaRat the electron thermalization time is short enough to as-
balance in terms of the steady-state solutions of the ratgume a Maxwelliarfor Fermi-Dirad distribution for the free
equations used either semiclassical and parametrized atomifectrons, thus an electron temperature for the free states is
data [10], or the hydrogenic approximation or isolated well defined. Also we restrict ourselves to dipole-allowed
atomic data for the rate constaritsl-15. The problem of  transitions. The cross sections that determine the rate con-
obtaining a set of rate equations for medium- or hijele-  stants are approximations of precise quantum-mechanical
ments in dense plasmas is complicated by a number of fagalculations and were used before to calculate electron im-
tors. First, the number of quantum states of the differenpact widths[16]. We start with the excitation cross section

many-electron configurations can be enormous. Secondsom a bound AA levei to anotherj by electron impact:
even when data of these quantum states are available for

isolated atoms and ions, the plasma electrons may suffi- e’ fij In x
ciently perturb those states to the degree that they may be a, mi [1-exp(—0.3)] X !
useless. Third, the non-LTE photon distribution has to be (2.1
coupled self-consistently to the statistical distribution of the

ma_ny—glectron ionic states. To overcome the first and_ seconghereA Ej; is the excitation energyf;; is the dipole oscilla-
difficulties we propose a set of rate equations using thgor strength normalized to one electron occupancy of the ini-
average-atoniAA) approach, which treats the plasma by onejg| statei and computed from the AA wave functions,
representative “‘average atom,” which subsequently can be- o/Ag; with ¢ as the energy of the incident electron, and
augmented with the details of the physically significantihe syperscript indicates “collision.” Equation(2.1) was
many-electron configurations. We will address the thirdypiained by a series of numerical fits Romatrix calcula-
problem with some limitations, as will be clearer below. Thesigns for dipole-allowed transitions in mediuhatoms and

AA model under LTE conditions is described in Ref$—6]  jons. The general expression for the excitation rate is given
and in references given there. The AA approach to the ratg

equations is complicated by the fact that the Fermi statistics

renders the rate equations nonlinear in terms of the AA level "

populations. For this reason at present we restrict our con- RiCJ. :j oij(e)v(e)n(e)de (secd), (2.2
siderations to the steady-state solution of the rate equations AEj;

O'icj (xX)= 1.27Ta(2)
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whereuv stands for the velocity. In the case of a Maxwellian

distribution, the number of free electrons betweeand ¢
+de is given by

2

1
Nn(e)de= \/—— p Wﬁ 81/2 EXK—S/kT)dS
w

2

\/; p —r(kT)/3 2 (AEij )3/2Xl/2

Xexp(—XAE;; /kT)dx, (2.3
wherek T stands for the temperatute energy unity of the
free electron gas witk denoting Boltzmann'’s constant apd
for the total free electron density. Using=c(2e/mc?)*/?
we obtain

re-14 271 i g fml 0.30]!
ij= L m_07 (k—_l_)meCpl[—exr(—. )]nx

X exp(—XxAE;; /kT)dx

=f;I5 (sech), (2.4

where we factored out the dipole oscillator strength. The

integral in Eq.(2.4) is given by

kT (

AE; *

kT
kT

- AE;;+0.%T
~ AE;+0.%kT ! ’

kT
(2.9

whereE, stands for the exponential integral. For the deexci-

tation (superelesticrates we have

f.
Rfi =fi exp(AE;; /kT)RiCj—>(detaiIed balange (2.6)
ij

The last relation is due to the fact that the deexcitation cross

section is the same as E@.1) except the Inf) term has to
be replaced by Ix+1). We calculate the electron impact
ionization rates from the cross section

€

x=—, (2.7

|zil

ofc(x) =

K 4 In x
— e[1-0.3 exgx)] —,
Si X

wheree ande; stand for the energy of the incident electron

and for the eigenenergy of the bound levelrespectively,
and the subscript indicates the transition to a continuum
state. Equatio(2.7) is analogous to Eq2.1) and, apart from

the exponential term, to Lotz’s cross section for electron im

pact ionization[17]. For the best fit to agree with more so-

phisticated calculations we uge=2.27. The ionization rate

constant is given by
3/2 cp

C el
Ric.=Ke (7m&) 2 (kT2

X (—X|gi|/kT)dx (sec?l). (2.9
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RS =exp (u—&)/KTIRE, 2.9
where u is the Fermi level of the free electron gas. Since
exp(u/KT) is proportional tg and so iR, , Eq.(2.9) indeed
represents three-body recombination. The condifigR’,
=(g;—N))R; leads to the Fermi statistics whelg stands
for the population of levei andg; for its statistical weight.
We account for the dielectronic recombination and its in-
verse by the Auger matrix elemerAg'®, which stands for an
Auger process where an electron from leweloes to con-
tinuum while an other from levdl fills a lower hole state in

i. In the AA approximation this matrix element is given by
[18]

2
Ape=—= NijZC (21,+1)(2l+1)aa.(B;+By+Byy),
(2.103
where
- Lol k Vg ko162
Bl_; 2k+1(0 0 o)(o 0 0
X[Rk(njljnmlm;niliClc)]z, (210[‘.)
_ 1 Implizljplc2
B,=2 2p+1(0 0 o) 00 0
X[RP(Npl 13 1ilic 1) 12, (2.100
ik L\ [lm k1
—(_1)\\ J 1 m c
B12=( ”Ek 2k+1(0 0 o)(o 0 o)
1 |m P li IJ P IC
XEP 2p+1(0 0 o)(o 00
Im 1o k
X{|r,-n |i° p}Rk(ndjnmIm;niliclc)
X RPNl Nl snilicle), (2.100

where A=I;+1j+|,+I.+1 and R stands for the usual

Slater integrals. Also, in Eq2.109 a stands for the avail-
ability of the states andc given by

N;
a=1-— (2.10¢
Oi
for a bound state and
ex —w)lkT
expl(ec— w)/KT] (2100

8= exf (eo— ) /KT]+ 1

L [1—exp(—0.2)]Inx exp for a continuum state.

The symbolsn and!| stand for the principal and angular
momentum quantum numbers, respectively. It should be
noted that Egs(2.109—(2.109d have nothing to do with the

The condition of detailed balance relates the three-body rethermal state of the plasma. They are strictly the results of

combination to Eq(2.8) by

taking the Auger matrix elements between averagsthtes.
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In the case of photoabsorption we consider the photon escap®r the photoionization rate from a bound stateto the
probability due to the finite optical thickness. The concept ofcontinuumc we use a lower case notation whey is less
photon escape probability was used in previous works irthan 1,

connection with line transfefs9—-21]. In this work we cal- 8

culate the photon escape probability form the total self- L 2

consistent photoabsorption cross section, which includes the fme™ h3c2 |8m\(ﬁw) Tmo(fw)Pel(fiw)

line profiles together with photoinization and inverse brems-

strahlung. We assume that the radiating ion is situated in a Xexp—fw)d(ho) (sech), (2.19
semi-infinite slab at a distanakaway from the edge of the
slab. For this case it is easy to show that the photon escap)
probability is given by

here P, stands for the frequency-dependent photon con-

hement factor andr, . is the photoionization cross section

of the level m normalized to one electron occupancy. It

P(fiw)=exp —x) — xE4(X), (2.11) should be noted that E¢2.19 includes the induced down-

wardc— m transition. The inverse radiative recombination is

wherex=d/l; |=1/0(hw)D, with o and D the photoab- given by

sorption cross section and ion density of the plasma. Actu-

ally, we will use the photon confinement probabiliBy,

which is 1-P. Next, we consider th_e_ radiative trans_'t'onfs',whereRﬁnC refers to the photoionization rate in the optically
For a spontaneous downward transition we have Einstein fhick case and is given by the same integral as @dl9

transition probability with P.=1. Equation(2.20 reflects the principle of detailed

Rl =X (u—&m)/KTIRyc, (2.20

2a (AE;)? balance when the free electrons follow the Fermi statistics. It
Aji=— —(':Jr fii (sech). (2.12  should be emphasized that the difference between the quan-
hoom tities of R}, which refers to a Planckian radiation field, and

mc?
I'me,» Which is the photoionization rate constant for the opti-
cally thin case, is crucial for determining the difference be-
tween the LTE and non-LTE level populations.

For an induced transition we use the general form

Bijch o (ho)N(ho)d(fio) (sech), (213
B. Rate equations
where N(w)d(%w) is the number of photons/chin the First, we summarize the rate constants that drive the rate
energy intervaliw and iw+d(fiw). For the absorption equationsRS, is the excitation(deexcitatiof rate constant
cross section we have from level m to level k by electron impact. For radiative
2 9 transitions between bound states we use

2m°e
U'J(ﬁw):m—chfllbll(ﬁw) (sz), (214) R:.nk:Bmk

wherebj; (%) is the line-shape function of the transition. [in Eg. (2.17] for upward transitions and

Assuming a Diracs function for the line shape we have ;
Rimnk=Amkt Bmk

27%e?

Bij= fifN(fw;)). (2.15 [in Eq.(2.18] for downward transitions.
m R: . is the rate constant for electron impact ionization from
level m to continuum. The reverse, three body recombination

For a Planckian radiation field we have rate constant is

w? 1 c _ c
_ RS —exd (1u—e)/KT]RS, . 2.21)
Ne(he)= 2723 expholkt =17 (219 o " me

I'mc iS the rate constant for photoionization for optically thin
We mimic the finite optical thickness with a photon distribu- case. The reverse, radiative recombination rate constant is

tion N(2w)=Np(Aw)P.(fw) and obtain R. —ex(u—e)/KTIR! (2.22
cm— m mc* .
5 2a (hwy)? 1
1% m& U expho;/kT)—1

Pc(fwj)). AJTC is the rate constant for the Auger process in which an
21 electron from levem goes to continuum while an other from
219 level | fills a hole state i, andA{™ is the inverseN, is the

For the downward-i transition the combined spontaneous 1€ number of free electrons per AA.
and induced rates give The availability of the staté is

A B _2a (AE”)Z 1 akzl_Nk/gk'
BT T i All rate constants are normalized to one-electron occupan-
cies of the bound levels and they do not include the avail-
(2.18 ability of the final state. Assuming that the number of bound
‘ ' AA levels is finite the rate equations are given by

Pc(h o)

" exp(hay; IKT)—1
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dN,, b
21 (RimNc+R;m)Nk Ay

2 (RSN +R” Da, [N N, +

m= (RGN A7 )N, — (2 2 Nj(g;—N)A™

1 2 3 4

(RN +RL)(gm—Ny)+

2 Z (g,~N >NA"")(gm—Nm),

(2.23

5 6

Nij(gi_Ni)A;'"ic_Ni(gm"Nm)(gj"Nj)Af;n .

—E (RSN +r0 N, 2 (RowN AR (8n—Np)+ 22 2 2
m j i

7 8

9 10
(2.24
|
All summations go over the bound level indices. It is easy to e
see that Eqs(2.23 and(2.24 satisfy the particle conserva- ; Z N;j(9i = N)DAj=Kpmne (2.253
tion
and
dN, dN,
—_ + _—
2§ a0 S 3 NG N A= et (4~ e KTIK o,
(2.25h

because the sums with respecintan terms 1 and 4 cancel ysing the relationship&.21) and(2.22 for the detailed bal-
out, the sum of term 2 with respect o cancels out term 7,  ance and then Eq2.24 for the steady-state case one has the
the same for terms 3 and 8, 5 and 9, and 6 and 10. The abo\g%neral form

is simply the consequence of particle number conservation.

In a steady-state solution we must hadbl./dt=0 sepa-

rately, which means that the sums 7, 8, 9, and 10 have to addd——E {(RE N+t Ko Np—exd (s —em)/KT]
t “m
up to zero. This last condition defines the steady-state ion-
ization balance, LTE or not. Next, we introduce some new X (d-—NI(RS. N.+R" +K
quantities from the triple sums 9 and 10. (Gm ™ Non) (R No+ R e+ Kem)}
Let =0. (2.26

TABLE |. Equivalent LTE temperatures, ionization states, and Fermi levels.

Xg KTeq (keV) N, — uIKT — fhog/KTeq

Pr(z=59) atKT=1keV and 0.1g/cm® Lg=1.3619 cm

0.0000 0.20313 28.81 9.6756 7.3283
0.0001 0.44531 40.93 9.3293 8.1022
0.01 0.84375 49.01 9.1515 8.9023
1.0 1.0 50.70 9.1178 9.1178
LTE 1.0 50.77 9.1178

Ge(Z=32) atkT=500 eV 0.01 g/crhLr=46.87 cm

0.0000 0.11523 19.357 10.669 8.4899
0.0001 0.15234 21.924 10.546 8.8217
0.01 0.42188 29.126 10.265 10.007
LTE 0.5 29.745 10.244

LASNEX 23.377 10.482
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FIG. 1. Photon confinement factors of
praseodymium vs photon energy laf =1 keV,
0.1 g/cn? density withxg=10"* (1), 1072 (II),
andxg=1 (Ill).

FIG. 2. Fermi functions of praseodymium at
kT=1keV and at 0.1 g/chdensity. The curves
marked(l), (1), (IlI'), and (V) correspond tog
=0, 104, 1072, and 1 together with the LTE
case, respectively.
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Equation(2.26) is generally valid for LTE or non-LTE ion- (2.11) for the photon escape probability involve a hierarchy
ization balance. Next, we take the approximation that theof iterations that we outline in the next section.
individual m terms in Eq.(2.26) are zero, which we will call
the “o.ne. Ieygl in continuu_m”(OLC) approximation. The . Ill. COMPUTATIONAL RESULTS
name is justified by observing that the OLC approximation is
exact when there is only one bound level embedded in the The rate equation®.23 and(2.24) in terms of the bound
continuum. The OLC approximation yields the following for level occupancies and; are cubic, which necessitates the
the occupancy of the leveh: application of iteration schemes for the solution. In addition,
all solutions must be also self-consistent with the frequency-
N = OmAm 2.27 dependent photon escape probability. In order to make the
M exd(u—em)/KT]+ Ay ' whole problem computationally tractable we adopted the fol-
lowing iteration scheme:(1) We start from the self-
where consistent LTE problem as described in R¢6.and[8] and
. ; compute all the rate constants from the LTE wave functions
N _RmndNe T Rinet Kem (2.9  and from the LTE photon escape probabilitg) Next we
M RENH It Kne ' obtain the first iteration value fd¥. in the OLC approxima-
tion using Egs.(2.27) and (2.28. (3) Next we solve Eq.
Equations(2.27 and (2.28 yield the Fermi statistics ik,,  (2.23 for the bound level populations by successive itera-
=1. That occurs if the plasma is optically thick in which tions where the availability factois, and @,,— N,,) for the
caseP.=1 andrp =R/, and in addition we must have n-th iteration are taken from then(- 1)th iteration we iterate
Kem=Kme- In fact, using the detailed balance for the Augeruntil the values olN,, converge. At this point the AA prob-
transition rates, it is easy to show that as the level populalem is solved in the first iteration4) In order to obtain
tions approach the LTE populations the last condition is satrealistic photoabsorption cross sections and photon escape
isfied. Also, in the limit when the background radiation field probabilities one must go beyond the AA model and build
is negligible,r},. is zero andRy,,. is responsible for the ra- into the model the effect of “detailed configuration account-
diative recombination and Eq2.29 leads to the corona ing” (DCA) due to the many-electron configurations. This
equilibrium. The number of free electrons per AN., is  necessitates calculating the statistical distribution of the nu-
obviously equal t&Z minus the number of bound electrons. merous DCA states, which in a system not in LTE is a seri-
The individual occupancies of the bound levels given byous problem in itself. We solve this problem by calculating
Egs.(2.27 and(2.28 are not exact because they are not thean “equivalent LTE temperature”kTey, which after
solutions of Eq.(2.23. However, their sum satisfies Eq. Busquet[22] is defined as the temperature that, under LTE
(2.26), therefore we adopt it as a reasonable approximatiogondition, yields the same value i, as the non-LTE prob-
for the ionization state. This facilitates the iteration proce-lem. We also calculate an equivalent Fermi lexgl, which
dure of solving Eq.(2.23 by determiningN, from Eqgs. together withkTe, is used to calculate an equivalent Boltz-
(2.27 and(2.28 first and solving Eq(2.23 for the bound mann distribution of the many-electron DCA states. We pro-
state populations subsequently. In fact, the self-consistent sgeed to compute the photoabsorption from these DCA states
lutions of Egs.(2.23, (2.27, and (2.29 together with Eq. as described in Ref8]. (5) Having obtained the non-LTE
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photoabsorption cross section and non-LTE populations imletails of the DCA states and such details of the opacity
this manner in the first iteration we go back to paibt and  calculations as line profiles, bremsstrahlung, and photoion-
iterate until convergency is reached. In the calculations preization. For those the reader is referred to Rg£3. [6], [8],
sented here convergency was reached usually after 4 or @d[15] and references quoted there. Here we concentrate
iterations. only on the non-LTE AA level populations. For praseody-
All the above iterations make the calculations rathermium in all cases th&k shell is completely full and the

lengthy compared to the LTE problems. We present two setk-shell populations do not differ much. Big differences occur
of calculations in which we investigate the effect of optical for the M shell and higher shells. This is reflected in Figs.
thickness, one for praseodymiui€59) atkT=1keV and 5-7 where the opacities for photon energies above the
at 0.1 g/cni density and one for germaniunZ € 32) atkT | -shell lines and edges are close. For low photon energies
=0.5 keV and at 0.01 g/cindensity. Calculations for the the opacity is dominated by inverse bremsstrahlung, which
first case for an optically thin plasma and using the methoditfers due to the different degrees of ionization. Also, for
of “equivalent LTE temperature” were published in Ref. the equivalent temperature LTE calculations the inverse
[22], the second was a study case at a confer¢db@here  premssirahlung is calculated by using the equivalent LTE
the author presented non-LTE corona equilibrium opacitiegemperature for the free electrons. The calculated opacities
obtained from level populations predicted by thESNEX o the germanium at 0.5 keV are shown in Figs. 8, 9, 10,

code of the Lawrence Livermore National Laboratory. Theand 11. Figures 8, 9, and 10 are analogous to those of Figs.

calculations for various optical thickness show that the re-5, 6, and 7. However, in the case of germanium the differ-
sults converge, as expected, to the LTE case when the :
plasma gradually becomes optically thick. We label the pa_ences .between the LTE and non-LTE populatlonslgccur al-
rameter for characterizing the optical thicknessdgy which ~ '€2dY in thel shell, so the LTE and non-LTE opacities are
is the distance of the central ion from the edge of the semicl0Se only beyond th&-shell edge. In Fig. 11 we compare

e . _ 74 2 .

infinite slab divided by the LTE Rosseland mean lengthth€ non-LTE opacities witkg=10"" and 10 “ with that of
Lg. an earlier calculation where the non-LTE AA populations

The conditions for praseodymium at 1 keV and for ger-Were obtained by the radiation transport coOeSNEX.
manium at 0.5 keV are summarized in Table | where we givel herefore, the solid curve in Fig. 11 represents a calculation
the parametersg in column 1, the equivalent LTE tempera- Where the non-LTE populations are not self-consistent within
tures in column 2, the numbers of free electrons per AA inthe model but were so to speak “borrowed” from another
column 3, and the degeneracy parameters of the free electr@ode. Since theASNEX code uses a somewhat simple atomic
gas u/KT and peq/kTeq in columns 4 and 5, respectively. physics package, the apparent differences are not surprising.
The calculations for praseodymium are shown in Figs. 1-7It is interesting to note though that thesNEX curve is close
and also in Figs. 12 and 13. Figure 1 shows the selfto the self-consistent non-LTE curve wig=10"* for pho-
consistent photon confinement factd?s for three cases of ton energies beyond thie-shell threshold to that withg
Xg. Figure 2 shows the Fermi functions, definedNag/gm =102 below theL-shell threshold. We also note that the
versus the binding energiggn atomic unitg of the self- | AsnEx populations were obtained for the optically thin case
consistent AA levels for four cases of optical thickness to-(x_—0),
gether with the LTE case. We can see that curve IV, corre- | Figs. 12 and 13 we show the effect of the presence or

sponding to the case when the radiating ion is one Rosselanghqence of the Auger matrix elements for one case of the
.melzn Ieng;[]h ﬁw?_)_/rgom the edge ththe f‘lab,hpractlcall)f{ COpraseodymium set. Figure 12 shows the Fermi functions for
Incides with the curve, even when the photon con 'ne"%re AA levels. It is evident that in the absence of the Auger

ment factors are not 1 for all photon energies. Figures 3 an . :
4 compare the LTE Fermi functions with those calculated in ansitions the occupancies of the upper levels are depleted,

the OLC approximation and with the full non-LTE rate equa—thu.S considerably reducing the phot-oab.sorption at photon en-
tions. It should be noted that strictly speaking Figs. 2-4°191es below th.M shell, as .shqwn n Fig. 13.

should be discrete, but for low binding energies the levels are Diréct experimental verifications of non-LTE effects are
closely spaced and they form a quasi-continuous distributiod]0t known to the author. Opacity experiments were pub-
In Figs. 2—4 the spikes in the non-LTE Fermi functions re-lished recently for germanium &T=76 eV [23] and for
flect the fact that adjacent levels with different angular mo-aluminum, iron, and holmium in thieT= 20 eV region[24].
mentum quantum numbers sometimes are popu|ated very uﬂ—he experimental data were publlshed in terms of the trans-
evenly. The calculated opacities for praseodymium ardnissivity of a slab of certain thickness of the hot plasma. We
shown on Figs. 5, 6, and 7 foig=0, 10 %, and 102, re- investigated the possible non-LTE features of the above ex-
spectively. In each figure we compare the LTE opacities withperiments by solving the steady-state rate equations and
that of the full non-LTE calculations and also with the LTE found that in each case the plasma was actually in LTE. The
calculations using the equivalent temperatures of Table |. Fotomparison of the calculated transmissivities with experi-
the non-LTE calculations the distribution of the DCA statesments are shown in Figs. 14-17. The calculated transmis-
is computed with the aid of the equivalent LTE temperaturessivities were derived from the opacities. In view of the fact
and Fermi level. The number of DCA states that contributethat the ratio of radiative to collisional transition rates is
significantly to the opacities can be quite numerous, for exproportional to kT)Y%p, it is not surprising that experi-
ample, the opacity in Fig. 6 was obtained using 144 DCAments below 100-200 eV show LTE conditions. We can
configurations distributed over 12 different degrees of ion-expect non-LTE conditions at high-temperature, small-size
ization. It is out of the scope of this paper to discuss furtheplasmas, such as occur in laser compressed pellets.
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IV. DISCUSSION temperature, the author is not aware of experiments that have

concentrated on quantitative measurements of non-LTE ef-

The purpose of this paper was to present a somewhd€cts. Since non-LTE effects are easier to detect at h_igher

rudimentary model for estimating the non-LTE effects ontemperatures, as more powerful lasers become available,

photoabsorption in laboratory plasmas. For the radiation fieldhose experiments will be possible.

around the plasma we used the Planckian field thinned out by

the photon escape probability. Generalization of the model

allowing any radiation field as an input is simple. Although  This work was performed under the auspices of the U.S.

experiments have been perfected to measure quantitativelyepartment of Energy by Lawrence Livermore National
LTE opacities of hot plasmas, up to about 100-eV plasmd.aboratory under Contract No. W-7405-Eng-48.
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